New Small-Cavity Cryptand Chromoionophores for Complexation of Lithium and Sodium Ions

EDDY CHAPOTEAU, BRONISLAW P. CZECH,* ANAND KUMAR and WOLODYMYR ZAZULAK

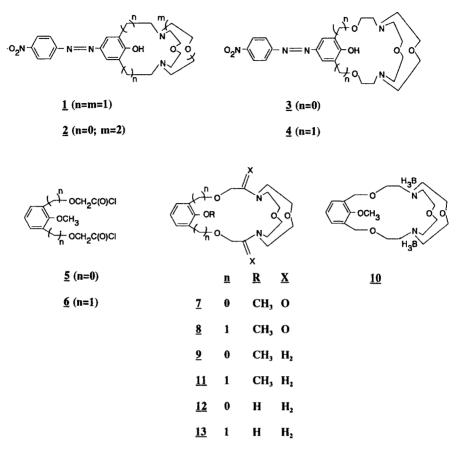
Miles Incorporated, Tarrytown, NY 10591, U.S.A.

(Received: 7 August 1993; in final form: 8 November 1993)

Abstract. Two new chromoionophores based on small-cavity cryptands with inward-facing phenolic groups have been synthesized. Both compounds incorporate a diaza-12-crown-4 moiety and bear a *p*-nitrophenylazo chromogenic group attached to the cryptand phenol framework, *para* to the phenolic group. Chromogenic cryptand **3** exhibits selectivity for Li^+ ions in the extraction mode but shows very little cation response in homogeneous aqueous media. A larger analog, chromogenic cryptand **4**, acts as a sodium scavenger and cannot be obtained in a sodium-free form.

Key words: Cryptands, chromoionophores, alkali metal cation complexation.

1. Introduction


Chromogenic indicator systems for the determination of potassium, sodium, and lithium ions in biological fluids have been of interest for more than fifteen years [1]. Despite a multitude of chromogenic structures published during that time only those based on cryptahemispherands have proved to be of practical importance for use in homogeneous and largely aqueous media [2]. Indicators for the colorimetric determination of lithium in aqueous solutions have been even more elusive. We have recently reported chromoionophore **1**, based on a small-cavity cryptand phenol, which can be applied in practice for the determination of lithium in physiological fluids [3]. Another structurally-similar chromogenic cryptand, **2**, highly selective for lithium in extraction, has recently been reported by Sutherland and Sholl [4].

Chromogenic cryptand phenols having larger cavities have been reported before [5]. In this paper, we report the synthesis of two new chromoionophores, **3** and **4**, based on small-cavity cryptand phenols, and their spectroscopic responses to lithium, sodium, and potassium ions.

2. Experimental

Melting points are uncorrected. ¹H and ¹³C-NMR spectra were recorded on a Varian Gemini spectrometer at 200 and 50 MHz, respectively. IR spectra were obtained

^{*} Author for correspondence.

Scheme.

with a Perkin-Elmer 267 spectrophotometer. The UV-visible spectra were recorded on a Cary-3 spectrophotometer. Fast atom bombardment (FAB) mass spectra were determined using *m*-nitrobenzyl alcohol (NOBA) as the matrix.

Benzene and DMF were kept over molecular sieves (4 Å). Tetrahydrofuran was distilled from sodium benzophenone ketyl. $BH_3 \cdot Me_2S$ complex was purchased from Aldrich. Diacid chlorides **5** [5a] and **6** [6], diaza-12-crown-4 [7], and sodium toluenethiolate-DMF reagent [8] were prepared according to literature procedures.

2.1. PREPARATION OF CRYPTAND DIAMIDES 7 AND 8

Solution A (100 mL) containing an acid chloride (7.00 mmol) in benzene and Solution B (100 mL) containing diaza-12-crown-4 (1.22 g, 7.00 mmol) [7] and triethylamine (1.74 g, 17.2 mmol) in benzene were added simultaneously to vigor-ously stirred benzene (230 mL), at an 8.3 mL/h addition rate. After the addition was completed, the mixture was stirred for 12 h. The solvent was removed *in vacuo* and the residue was dissolved in CHCl₃ and filtered. The solvent was removed

in vacuo and the residue was chromatographed on silica gel with CH₂Cl₂-EtOH (97 : $3 \rightarrow 95$: 5) as eluent.

7: Yield: 30%; white solid with m.p. 230°C (dec). ¹H-NMR(CDCl₃): $\delta = 2.60-3.05$ (m, CH₂N, 6H), 3.25–3.60 (m, CH₂N+CH₂O, 6H), 3.70–4.10 (m, CH₂O+CH₃O, 7H), 4.99 (ABq, OCH₂CO, 4H), 6.80–7.05 (m, Ar, 3H). ¹³C-NMR(CDCl₃): $\delta = 45.62$, 47.87 (CH₂N), 61.54 (CH₃O), 67.97, 69.45, 69.94 (CH₂O), 117.83, 123.02, 151.16 (Ar), 169.27 (C=O). IR (deposit on NaCl plate): 1580 (C=O), 1128 (C-O) cm⁻¹. Anal. Calcd. for C₁₉H₂₆N₂O₇: C, 57.86; H, 6.64. Found: C, 57.92; H, 6.47.

8: Yield: 60%; white solid with m.p. 197.5–199°C. ¹H-NMR(CDCl₃): $\delta = 2.64-3.05$ (m, CH₂N, 4H), 3.39–3.75 (m, CH₂N+CH₂O+CH₃O, 13H), 4.09 (ABq, CH₂O, 4H) 4.41 (t, CH₂O, 2H), 4.76 (ABq, CH₂O, 4H), 7.19 (t, ArH, 1H), 7.43 (d, ArH, 2H). ¹³C-NMR(CDCl₃): $\delta = 48.87$, 50.92 (<u>C</u>H₂N), 62.68 (<u>C</u>H₃O), 63.73, 64.86, 65.73 (<u>C</u>H₂O), 72.19 (Ar<u>C</u>H₂), 125.97, 126.86, 132.48, 133.11 (Ar), 172.04 (C=O). IR (deposit on NaCl plate): 1652 (C=O), 1124, 1100 (C-O) cm⁻¹. Anal. Calcd. for C₂₁H₃₀N₂O₇: C, 59.70; H, 7.16. Found: C, 59.81; H, 7.11.

2.2. PREPARATION OF CRYPTAND 9

A solution of cryptand diamide 7 (1.00 g, 2.54 mmol) in CH₂Cl₂ (52 mL) was added dropwise to a solution of LiAlH₄ (0.39 g, 10.4 mmol) in THF (105 mL) and the mixture was refluxed for 8 h. The reaction was quenched by addition of EtOAc and water. The precipitate was filtered and the solvent was removed *in vacuo*. The residue was chromatographed on deactivated alumina with CH₂Cl₂-MeOH (95 : 5) to afford **9** (0.45 g, 48%) as a white solid which sinters at 150°C and slowly decomposes. ¹H-NMR(CDCl₃): $\delta = 2.38-3.09$ (m, CH₂N+CH₂O, 16H), 3.42–3.55 (m, CH₂O, 2H), 3.65–3.79 (m, CH₂O, 2H), 3.94 (s, CH₃O, 3H), 4.06–4.38 (m, CH₂O, 4H), 6.57 (d, ArH, 2H), 6.83 (t, ArH, 1H). ¹³C NMR (CDCl₃): $\delta = 55.45$, 57.24, 58.55 (CH₂N), 62.71 (CH₃O), 69.43, 69.85, 70.00 (CH₂O), 112.53, 122.59, 145.75, 154.12 (Ar). IR (deposit on NaCl plate): 1128, 1090 (C-O) cm⁻¹. *Anal. Calcd.* for C₁₉H₃₀N₂O₅: C, 62.27; H, 8.25. *Found*: C, 62.46; H, 8.15.

2.3. PREPARATION OF DIHYDROBORANE CRYPTAND 10

10 M BH₃ · Me₂S complex (13.4 mL, 134 mmol) was slowly added to a solution of cryptand diamide **8** (2.00 g, 4.73 mmol) in THF (300 mL). The mixture was refluxed for 3 h. The reaction was quenched by careful addition of water and the solvent was removed *in vacuo*. The residue was redissolved in CH₂Cl₂, the solution was washed with water and filtered through a layer of anhydrous CaSO₄. The solvent was removed *in vacuo* and the residue was chromatographed on flash silica gel with CHCl₃-EtOH (99 : $1 \rightarrow 95 : 5$) to produce **10** (1.73 g, 86%) as a white solid with m.p. 173–175°C. ¹H-NMR(CDCl₃): $\delta = 1.50$ (very br s, BH₃,

6H), 2.80–3.32 (m, CH₂N, 12H), 3.38–4.11 (m, CH₂O+CH₃O, 15H), 4.45 (ABq, CH₂O, 4H), 7.11 (t, ArH, 1H), 7.31 (d, ArH, 2H). ¹³C-NMR(CDCl₃): δ = 57.19, 58.06, 63.59 (CH₂N), 62.77 (CH₃O), 66.30, 66.50, 67.12, 69.08 (CH₂O), 124.91, 131.66, 133.07, 158.95 (Ar). IR (deposit on NaCl plate): 2339, 2312 (B-H), 1095, 1080, 1065 (C-O) cm⁻¹. Anal. Calcd. for C₂₁H₄₀B₂N₂O₅: C, 59.74; H, 9.55. Found: C, 59.74; H, 9.62.

2.4. PREPARATION OF CRYPTAND 11

Dihydroborane **10** (0.89 g, 2.46 mmol) was suspended in MeOH (200 mL) containing KOH (3.13 g, 55.8 mmol) and the mixture was stirred at room temperature for 4 days. The solvent was removed *in vacuo* and the residue was repeatedly extracted with petroleum ether. The solvent was removed *in vacuo* from the combined extracts to give a solid which was redissolved in CH₂Cl₂ and shaken several times with deionized water. The organic layer was separated and the solvent was removed *in vacuo* to give pure cryptand **11** (0.73 g, 89%) as a white solid with m.p. 143.5–145°C. ¹H-NMR(CDCl₃): δ = 2.28–2.65 (m, CH₂N, 12H), 3.04–3.52 (m, CH₂O, 12H), 4.12 (s, CH₃O, 3H), 4.55 (br s, ArCH₂, 4H), 7.08 (t, ArH, 1H), 7.28 (d, ArH, 2H). ¹³C-NMR(CDCl₃): δ = 58.80, 60.45 (CH₂N), 67.05 (CH₃O), 69.28, 70.02, 71.33 (CH₂O), 124.90, 133.95, 134.24, 161.89 (Ar). IR (deposit on NaCl plate): 1125, 1095 (C-O) cm⁻¹. *Anal. Calcd.* for C₂₁H₃₄N₂O₅: C, 63.94; H, 8.69. *Found*: C, 63.93; H, 8.76.

2.5. PREPARATION OF CRYPTAND PHENOL 12

Lithium bromide (0.17 g, 1.99 mmol) and sodium thioethoxide (0.23 g, 2.67 mmol) were added to a solution of cryptand **9** (0.38 g, 1.04 mmol) in DMF (14 mL) and the mixture was heated at 150°C for 9 h. The solvent was removed *in vacuo* and the residue was chromatographed on deactivated alumina with CH₂Cl₂-MeOH (99 : 1 \rightarrow 96 : 4) to afford **12** (0.28 g, 77%) as a white solid with m.p. 136–138°C. ¹H-NMR(CDCl₃): $\delta = 2.35-2.90$ (m, CH₂N, 12H), 3.05–3.40 (m, CH₂O, 8H), 4.15 (t, CH₂O, 4H), 6.56 (d, ArH, 2H), 6.73 (t, ArH, 1H), 7.88 (br s, OH, 1H). ¹³C-NMR(CDCl₃): $\delta = 56.86$, 59.06 (CH₂N), 69.85, 71.03 (CH₂O), 112.29, 120.66, 141.44, 153.88. IR (deposit on NaCl plate): 3310 (O-H), 1108 (C-O) cm⁻¹. Anal. Calcd. for C₁₈H₂₈N₂O₅: C, 61.34; H, 8.01. Found: C, 61.26; H, 7.94.

2.6. PREPARATION OF CRYPTAND PHENOL 13

A solution of cryptand **11** (0.90 g, 2.28 mmol) and sodium toluenethiolate (1.46 g, 10.0 mmol) in DMF (20 mL) was heated under argon for 4 h at 100°C. The solvent was removed *in vacuo* and the residue was chromatographed on alumina with CH₂Cl₂-MeOH (98 : 2) as eluent to give **13** (0.64 g, 74%) as a light-yellow viscous oil. ¹H-NMR(CDCl₃): $\delta = 2.55-2.88$ (m, CH₂N, 12H), 3.45-3.92 (m,

CH₂O, 12H), 4.55 (s, PhCH₂, 4H), 6.80 (t, ArH, 1H), 7.13 (d, ArH, 2H), 9.20 (br s, OH, 1H). ¹³C-NMR(CDCl₃): δ = 58.83, 59.66 (<u>CH</u>₂N), 69.63, 71.14, 71.35 (<u>C</u>H₂O), 121.41, 128.64, 132.27, 158.32 (Ar). IR (neat): 3290 (O-H), 1111 (C-O) cm⁻¹. Anal. Calcd. for C₂₀H₃₂N₂O₅: C, 63.14; H, 8.48. Found: C, 63.11; H, 8.59.

2.7. PREPARATION OF CHROMOGENIC CRYPTANDS 3 and 4

A solution of *p*-nitrobenzenediazonium chloride (prepared at $0-5^{\circ}$ C from *p*-nitroaniline (114 mg, 0.825 mmol), 1 M HCl (2.5 mL), and NaNO₂ (68 mg, 0.985 mmol) was added dropwise to a solution of the cryptand phenol (0.84 mmol) in 0.25 M NaOH (4.2 mL). After the addition was completed, the pH of the mixture was adjusted to 8.5 with 5% aqueous NaOH and the mixture was stirred overnight at room temperature. Dichloromethane and water were added and the organic layer was separated. The solvent was removed *in vacuo* and the residue was chromatographed on deactivated neutral alumina with EtOAc-MeOH (98 : 2) as eluent.

3: Yield 36%, dark-red glass. ¹H-NMR(CDCl₃): $\delta = 2.40-3.65$ (m, CH₂N+CH₂O, 20H), 4.27 (t, CH₂O, 4H), 7.35 (s, ArH, 2H), 8.15 (ABq, ArH, 4H), 8.98 (br s, OH, 1H). ¹³C-NMR(CDCl₃): $\delta = 56.56$, 58.36 (CH₂N), 69.76 (CH₂O), 108.74, 123.54, 125.19, 153.07 (Ar). IR (film): 3200 (O-H), 1097 (C-O) cm⁻¹. MS: 502.3 (M⁺). Anal. Calcd. for C₂₄H₃₁N₅O₇: C, 57.48; H, 6.23. Found: C, 57.21; H, 6.28.

4[−] · Na⁺: Yield 63%, dark-violet glass. ¹H- NMR(CDCl₃): δ = 2.55–2.85 (m, CH₂N, 12H), 3.40–3.75 (m, CH₂O, 12H), 4.51 (s, PhCH₂O, 4H), 7.85 (s, ArH, 2H), 8.01 (ABq, ArH, 4H). ¹³C-NMR(CDCl₃): δ = 54.36, 57.40 (<u>C</u>H₂N), 68.38, 72.79 (<u>C</u>H₂O), 123.44, 126.75, 129.81, 131.05, 141.40, 147.61, 160.53 (Ar), 181.61 (C=O). IR (film): 1092 (C-O) cm⁻¹. MS: 552.3 (M+Na⁺). Anal. Calcd. for C₂₆H₃₄N₅O₇Na: C, 56.62; H, 6.21. Found: C, 57.04; H, 6.35.

A nearly sodium-free 4 was obtained by dissolving its sodium complex in toluene and washing several times with deionized water until almost complete disappearance of the band from the NaL form at \sim 530 nm.

2.8. UV-VIS SPECTROSCOPIC PROPERTIES OF CHROMOGENIC CRYPTANDS 3 AND 4

The UV-vis spectra of the acid (HL) and base (L⁻) forms of chromogenic cryptands **3** and **4** were determined in 5.0×10^{-5} M solutions of chromoionophore **3** in 1% v/v diethylene glycol monoethyl ether (DEGMEE) in water; 5×10^{-3} M stock solutions of **3** and **4** were prepared in DEGMEE. Typically, the solutions were prepared as follows: for the spectral characteristics in 1% v/v DEGMEE, 0.02 mL of the stock solution was added to 1.98 mL of the appropriate reagent and mixed. HCI (1N) was used to obtain the acid form (HL) and 1 M tetramethylammonium hydroxide

(TMAOH) for the base form (L^{-}) . The resulting solutions were scanned in a 1 cm path length cuvette from 700 to 300 nm on a Beckman DU-8B spectrophotometer.

2.9. Responses of Chromoionophores 3 and 4 to Lithium, Sodium and Potassium in CH_2CL_2 -Water

Equal volumes (3.0 mL) of a dichloromethane solution of $3 (5.0 \times 10^{-5} \text{ M})$ and an aqueous solution made of 0.1 M CAPS for pH 12.0, containing 0.01 M LiCl, NaCl, and KCl, respectively, were vortexed in a test tube for 2 min. The organic phase was separated and scanned from 700 to 300 nm (Table II). Similarly, a dichloromethane solution of 4 (1.0×10^{-4} M) and an aqueous solution of 0.2 M HEPES for pH 8.0, containing 0.02 M LiCl, NaCl, and KCl, respectively, were vortexed and the organic layer was scanned.

3. Results and Discussion

3.1. SYNTHESES

Cyclization of diacid chlorides 5 [5a] and 6 [6] with diaza-12-crown-4 [7] under high dilution conditions in benzene gave cryptand diamides 7 and 8 in yields of 30 and 60%, respectively. Reduction of 7 with LiAlH₄ in a mixed THF-CH₂Cl₂ solvent system [3a] afforded cryptand 9 in 48% yield. When these conditions were applied to diamide 8 only a complicated mixture of products was obtained. Thus, diamide 8 was first treated with a BH₃ · Me₂S complex to give dihydroborane 10 (86%), which subsequently was converted in 89% yield into cryptand 11 by treatment with methanolic KOH according to Lehn's procedure [9]. Demethylation of cryptand 9 with a EtSNa-LiBr mixture in DMF at 150°C [10] gave cryptand phenol 12 in 77% yield.

Cryptand phenol 13 was obtained in 74% yield from its precursor 11 in reaction with sodium toluenethiolate in DMF [8] at 100°C after a 4 h period. Higher temperatures and/or longer reaction times lead to fast decomposition of the product. Cryptand phenols 12 and 13 were coupled with p-nitrobenzenediazonium chloride to produce chromogenic cryptands 3 and $4^- \cdot Na^+$ in yields of 36 and 63%, respectively. When cryptand phenol 13 was treated with p-nitrobenzenediazonium tetrafluoroborate in the presence of 5% aqueous LiOH, chromogenic cryptand 4 was obtained as a mixture of its sodium complex and a free ligand, as evidenced by the FAB mass spectrum of the product. This result indicates that 4 easily scavenges traces of sodium present in solvents, reagents, and chromatographic materials. Such behavior has been previously observed with spherands [11] and cryptahemispherands [2b]. Although most of the complexed sodium can be removed by extensive washing of organic solvent solutions of 4 with deionized water, full removal of Na⁺ is impossible since the cryptand nitrogen atoms freed from the complex become protonated and the chromogenic compound is lost to the aqueous phase.

Compd.	¹ H NMR, δ		¹³ C NMR, δ	
	ArOC <u>H</u> ₃	ArC <u>H</u> 2O	ArO <u>C</u> H₃	<u>C</u> _{AR} -OMe
9	3.94		62.71	145.75
9 · LiClO4	3.99		64.66	141.02
9 · NaClO ₄	4.01	<u> </u>	64.99	143.42
$9 \cdot KClO_4$	NB ^a		NB^{a}	NB^{a}
11	4.12	4.55 (br s)	67.05	161.89
$11 \cdot \text{LiClO}_4$	3.92	4.58 (ABq, $\Delta \nu_{AB}$ 0.58)	63.73	159.67
11 · NaClO ₄	3.93	4.55 (ABq, $\Delta \nu_{AB} 0.63$)	63.13	158.84
$11\cdot KClO_4$	3.91	4.45 (ABq, $\Delta \nu_{AB} 0.55$)	63.82	159.09

TABLE I. Chemical shifts of methoxyl groups in ¹H- and ¹³C-NMR spectra of cryptands and their lithium, sodium, and potassium complexes in CDCl₃.

^a No binding was observed.

TABLE II. UV-vis spectral characteristics $(\lambda_{max} \text{ and } \varepsilon(\lambda_{max}))$ of chromogenic compounds 3 and 4 in H₂O-DEGMEE (99+1, v/v).

Compd.	Form ^a	λ_{\max} , nm	$\varepsilon(\lambda_{\max})$
3	L-	578	32300
	HL	499	66000
ch			
4 ^b	L^{-}	516	31940
	HL	368	23550
		467	7400

 $^{a}L^{-}$ is fully ionized in 1.0 M TMAOH and

HL is nonionized ligand in 0.1 M HCl.

^b Compound **4** contained residual sodium.

3.2. COMPLEXATION OF LITHIUM, SODIUM, AND POTASSIUM IONS BY CRYPTANDS 9 AND 11

Complexation of lithium, sodium and potassium ions by methoxycryptands 9 and 11 was followed by ¹H and ¹³C-NMR in CDCl₃. In the proton spectra, upon complexation of 9 with Li⁺ and Na⁺, singlets of the inward-facing methoxyls were shifted only slightly downfield (Table I). Downfield shifts by about 2 ppm were observed in the corresponding ¹³C-NMR spectra for the methyl carbon signals. There was no detectable interaction between 9 and K⁺, most probably due to cavity-ion incompatibility. More pronounced effects were caused by complexation in spectra of 11. In general, upon complexation, signals of methylene protons

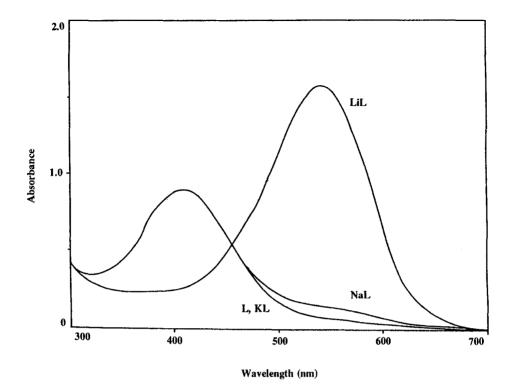


Fig. 1. UV-vis spectra of lithium (LiL), sodium (NaL), and potassium (KL) responses of cryptand 3 (L) in CH₂Cl₂-0.1 M TMAOH.

adjacent to nitrogen and oxygen were shifted downfield. The largest shift by about 0.5 ppm was observed for CH₂N protons due to complexation of Li⁺. Singlets assigned to the methoxyl protons were shited upfield by about 0.2 ppm from δ 4.12 (free) to about δ 3.92 (complexes). A broad singlet of ArCH₂O protons became an AB quartet upon complexation with all three ions. In the aromatic regions, the largest changes were observed for the carbons linked with the methoxyl groups.

3.3. SPECTRAL CHARACTERISTICS OF CHROMOGENIC CRYTANDS 3 AND 4

Wavelength maxima (λ_{max}) and molar absorptivities (ε) of the acid (HL) and base (L⁻) forms of chromogenic cryptands **3** and **4** were taken in 1% aqueous DEGMEE and are recorded in Table II. To suppress ionization of the phenolic hydroxyl and thereby obtain the HL spectra, absorbances were determined in 1.0 M HCl. Likewise, 1.0 M TMA(OH) was used when obtaining the L⁻ spectra to induce ionization of the O-H bond.

Previously, it has been observed that chromogenic cryptands having inwardfacing hydroxyl groups can exist in solutions in the (phenylazo)phenol-quinone

TABLE III. Spectral responses of chromogenic cryptand 3 to lithium, sodium and potassium ions in CH_2Cl_2 -0.1 M TMAOH and in CH_2Cl_2 -H₂O, pH 8.0 for compound 4.

Compd.	Form ^a	λ_{\max}, nm	$arepsilon(\lambda_{\max})$
3	L	409	18000
	LiL	543	32000
	NaL	408	18000
	KL	410	18300
4 ^{b,c}	L	521	12200
	LiL	518	11500
	NaL	524	15600
	KL	523	12700

^a L is the uncomplexed ligand; LiL, NaL, and KL are the compound in the presence of large excesses of lithium, sodium and potassium ions, respectively.

^b The aqueous phase (pH 8.0) was buffered with 0.2 M *N*-2-hydroxyethylpiperazine-*N'*-3-ethanesulfonic acid, adjusted with TMAOH.

^c Compound 4 contained residual sodium.

phenylhydrazone tautomeric equilibrium which depends on the solvent [3a, 5b]. A wavelength maximum at 499 nm with an unusual high molar absorptivity of 66,000 for nonionized **3** is consistent with the presence of its hydrazone tautomer (Table II). In going from HL form to L^- , a bathochromic shift to 578 nm accompanied by a typical reduction of absorptivity is observed.

There are two wavelength maxima at 368 and 467 nm observed for nonionized **4**. According to the literature data [12], the maximum at 368 nm can be attributed to the azo form of **4**, which is stabilized by intraannular hydrogen bonding. The tautomeric hydrazone form gives the higher wavelength maximum. Ionization of **4** produced a smaller than expected bathochromic shift to 516 nm and an increase in molar absorptivity. It is possible that this rather anomalous behavior is due to the residual sodium contamination of **4**.

3.4. CATION RESPONSES

Unlike chromogenic cryptand 1, compound 3 is inactive toward Li⁺, Na⁺, and K⁺ in homogeneous aqueous solutions but exhibits high preference for Li⁺ in CH₂Cl₂-water extractions. Shaking a CH₂Cl₂ solution of 3 with aqueous LiCl at pH > 12

results in a 134-nm shift in the absorption maximum to a longer wavelength and a considerably higher molar absorptivity for the LiL form versus the L form (Table III). Neither Na⁺ nor K⁺ interact with **3** under these conditions. Spectral cation responses of chromogenic cryptand **3** are shown in Figure 1. Compound **4**, which scavenges Na⁺ from the environment, does not seem to bind Li⁺ or K⁺: only slight changes in both wavelength maxima and absorptivities are observed in the presence of these ions (Table III).

In conclusion, chromogenic cryptand 3 exhibits very good selectivity for lithium over physiologically important sodium and potassium ions. In instances where the extraction mode is applicable 3 can be used for the colorimetric quantitation of lithium ions. The difficulty in obtaining sodium-free compound 4 makes it impractical for the colorimetric determination of sodium ions.

References

- (a) M. Takagi and K. Ueno: *Top. Curr. Chem.* 121, (1984). (b) H.-G. Lohr and F. Vögtle: *Acc. Chem. Res.* 18, 65 (1985). (c) M. Takagi: in *Cation Binding by Macrocycles* (eds. Y. Inoue and G.W. Gokel), pp. 465–495, Marcel Dekker, New York (1990).
- (a) A. Kumar, E. Chapoteau, B.P. Czech, C.R. Gebauer, M.Z. Chimenti and O. Raimondo: *Clin. Chem.* 34, 1709 (1988). (b) R.C. Helgeson, B.P. Czech, E. Chapoteau, C.R. Gebauer, A. Kumar and D.J. Cram: *J. Am. Chem. Soc.* 111, 6339 (1989). (c) B.P. Czech, E. Chapoteau, W. Zazulak, C.R. Gebauer and A. Kumar: *Anal. Chim. Acta* 241, 127 (1990). (d) B.P. Czech, E. Chapoteau, M.Z. Chimenti, W. Zazulak, C.R. Gebauer and A. Kumar: *Anal. Chim. Acta* 243, 159 (1992).
- (a) W. Zazulak, E. Chapoteau, B.P. Czech and A. Kumar: J. Org. Chem. 57, 6720 (1992). (b) E. Chapoteau, B.P. Czech, W. Zazulak and A. Kumar: Clin. Chem. 38, 1654 (1992).
- 4. A.F. Sholl and I.O. Sutherland: J. Chem. Soc., Chem. Commun., 1716 (1992).
- (a) R. Klink, D. Bodart, J.-M. Lehn, B. Helfert and R. Bitsch (Merck): *Ger. Offen.* DE 3,202,779 (1983); *Chem. Abstr.* 100, 34574p (1984). (b) E. Chapoteau, B.P. Czech, C.R. Gebauer, A. Kumar, K. Leong, D.T. Mytych, W. Zazulak, R.A. Bartsch, D.H. Desai, E. Luboch and J. Krzykawski: *J. Org. Chem.* 56, 2575 (1992).
- 6. A. Czech, B. Czech, R.A. Bartsch, C.A. Chang and V.O. Ochaya: J. Org. Chem. 53, 5 (1988).
- 7. B. Dietrich, J.-M. Lehn, J.P. Sauvage and J. Blanzat: Tetrahedron 29, 1629 (1973).
- 8. R. Cacciapaglia, L. Mandolini and F.S. Romolo: J. Phys. Org. Chem. 5, 457 (1992).
- 9. J. Cheney, J.P. Kintzinger and J.-M. Lehn: Nouv. J. Chim. 2, 411 (1978).
- 10. G.I. Feutrill and R.N. Mirrington: Aust. J. Chem. 25, 1719 (1972).
- 11. D.J. Cram, R.A. Carmack and R.C. Helgeson: J. Am. Chem. Soc. 110, 571 (1988).
- 12. P.F. Gordon and P. Gregory: Organic Chemistry in Color, p. 100, Springer-Verlag, New York (1987).